NREL’s Geothermal JEDI: Less Intimidating Than That Other JEDI

Paul Schwabe's picture

For most people, the word "JEDI" conjures up images of distant galaxies, epic light-saber battles, fuzzy Ewoks, and fatherly plot twists. For us here at NREL, however, JEDI is more likely associated with a series of models rather than a series of movies. But just like any dedicated movie franchise fan, we are bursting with excitement over the recent release of the newest model in the series—JEDI for geothermal development.

JEDI Training — Episode I

JEDI is short for the Jobs and Economic Development Impacts model [1].  Each of the various JEDI models estimates the gross economic impacts of constructing and operating renewable energy or fossil fuel power plants (note: be sure to see the description of JEDI's limitations below). The models are user-friendly and customizable to experts and non-experts alike to reveal the magnitude of economic and job impacts flowing from development of energy generation projects.  The results of the JEDI model include three categories of economic impacts, which are shown in Figure 1. According to the user manual for JEDI geothermal, these effects are classified in one of three ways [2]:

  • "Project development and onsite labor impacts: The onsite or immediate effects created by an expenditure.
  • Supply chain impacts: The increase in economic activity that occurs when contractors, vendors, or manufacturers receive payment for goods or services and are able to pay others who support their business.
  • Induced impacts: The effects driven by reinvestment and spending of earnings by direct and indirect beneficiaries" [2].

The combined impact of these three categories (i.e., project development and onsite labor, supply chain, and induced) results in the total estimated economic effect from an expenditure [2].  Each of these JEDI geothermal results are provided in both dollars of economic output as well as full-time equivalent (FTE) job positions and earnings supported [2].

Of course, it is important to also emphasize that the JEDI models have a number of limitations to consider when interpreting modeling results. They include but are not limited to: JEDI results are estimates, not precise forecasts; results reflect gross impacts, not net impacts; and results are based on approximations of the relationship between an industry expenditure and its associated economic output [3].

Figure 1. The layers of JEDI geothermal economic impacts
Source: Adapted from [1]

JEDI Geothermal — Episode II

The newest JEDI—JEDI geothermal—was just released publicly and allows users to estimate project costs and direct economic impacts for both hydrothermal and Enhanced Geothermal Systems (EGS) power generation projects. It follows similar models for solar, wind, biomass, marine, coal, and natural gas electricity generation. Each of the JEDI models contains some common input requirements such as capacity factor, nameplate capacity, capital costs, and annual operations and maintenance costs.

JEDI geothermal also contains several unique attributes not included in other versions of the model. For example, there are several input fields to account for the drilling costs necessary for geothermal development. These are big-ticket items and include exploration costs, well and material costs, and reservoir stimulation for EGS. Depending on the degree of expertise of the user, the JEDI geothermal model can be set up to run using either a simple module or a module with more detailed level of input parameters. In both cases, the model is populated with default parameters to assist the user [2].

JEDI Modeling Analysis — Episode III

To validate and demonstrate the JEDI geothermal model, NREL compared the announced jobs from two real-world geothermal projects to the FTE estimates using a JEDI geothermal analysis. These actual geothermal projects are the Blue Mountain geothermal project in Nevada and the Neal Hot Springs project in Oregon. Developers of these projects participated in the Department of Energy's 1705 Loan Guarantee program and as part of the application were required to report their estimates of permanent and construction jobs associated with the project.

Table 1 shows the announced jobs for these two projects and the corresponding modeling results from project development and onsite labor impacts from a JEDI geothermal analysis. In each case, the JEDI geothermal analysis provides a reasonable estimate of the permanent and construction jobs supported from development of the geothermal electricity plant.

Table 1. Job Impacts for Geothermal Projects Utilizing DOE's 1705 Loan Guarantee Program
Project Developer State Jobs Supported (FTEs)
Announced JEDI Geothermal Model Estimates
Permanent Construction Permanent Construction
Blue Mountain Nevada Geothermal Nevada 14 200 17 225
Neal Hot Springs U.S. Geothermal Oregon 10 150 12 146

Source: Adapted from [2]

In addition to estimates of jobs supported, the JEDI geothermal model also provides estimates for economic output for a modeled project. As shown in Table 2, the Blue Mountain project is estimated to provide over $104 million in economic output during the construction phase and a further $6 million in annual output during the operational phase.

Table 2. JEDI's Job and Economic Output Estimates of the Blue Mountain project
Local Economic Impacts — Summary Results
  Jobs (FTE) Earnings (Millions of $ 2010) Output (Millions of $ 2010)
During Construction Period
Project Development and Onsite Labor Impacts 225 $11.5 $17.25
   Construction Labor 204 $9.66  
   Construction Related Services 21 $1.83  
Turbine and Supply Chain Impacts 283 $17.52 $65.98
Induced Impacts 171 $6.86 $21.06
Total Impacts 679 $35.87 $104.28
During Operating Years (Annual)
Onsite Labor   $2.24 $2.24
Local Revenue and Supply Chain Impacts   $0.23 $2.95
Induced Impacts   $0.27 $0.83
Total Impacts   $2.73 $6.02

Source: [2]

It's a Wrap

Fortunately, mastery of the JEDI geothermal model does not require exceedingly awesome telekinetic abilities, persuasive mind tricks, or a high midi-chlorian count—a wealth of supporting resources including a JEDI geothermal user guide, case studies, and supporting documentation is available at:


[1] "JEDI: Jobs and Economic Development Impact Model."  National Renewable Energy Laboratory. Factsheet, NREL/FS-500-46865. December 2009. Accessed September 19, 2012:

[2] Johnson, C.; Augustine, C.; Goldberg, M. "Jobs and Economic Impact (JEDI) Model Geothermal User Reference Guide." National Renewable Energy Laboratory. NREL Report No. TP-6A20-55781. September 2012. Accessed December 13 2012:

[3] "Limitations of JEDI Models."  National Renewable Energy Laboratory.  Accessed September 2012: